×

Warning

JUser: :_load: Unable to load user with ID: 1543
Tuesday, 23 January 2007 00:16

Nanodots may drastically increase digital data storage capacity

By
Scientists are developing tiny magnetic particles called nanodots that are only a few billionth of a meter in diameter. The nanodots are showing promise in decreasing the amount of data storage space by at least one-hundred times what is currently held with hard disk drives. With storage requirements doubling about every year, nanodots may hold the answer to handling increasingly large amounts of digital data.

Researchers at the U.S. National Institute of Standards and Technology (NIST), Gaithersburg, Maryland, and the University of Arizona (UA), Tucson, Arizona, are making nanodot arrays that react to strong magnetic fields. These nanodots might eventually end up within future commercial hard drives.

The nanodots produced so far are 50 nanometers in diameter (about one-thousandth the diameter of a human hair) where one nanometer is equal to one-billionth the length of one meter. They are made with a magnetic force microscope using the process of electron beam lithography.

A magnetic force microscope—a type of scanning probe microscope—maps the changes found within a magnetic field by measuring the magnetic interaction between a sample and a magnetic tip on the microscope. Electron beam lithography is the process of generating patterns on a surface with the use of a beam of electrons.

Using the binary numeral system (base 2) of zeros and ones commonly used in computer systems, nanodots are built so they can switch back and forth between a north pole and a south pole, depending on the strength of the magnetic field. A dark colored pole, as seen under a microscope, is magnetized in the ‘up” direction, which represents 1 in binary code, and a light colored pole is magnetized in the ‘down’ direction, which corresponds to 0.

The key to making nanodots usable is to make them switch between the poles without much variability—what is called variation in nanodot switching response. This control was difficult in the past due to a lack of understanding about the basic nature of this variability. However, variation has been successfully controlled by the NIST/UA team to less than 5% of the average switching field. They have also been able to identify the reasons why variability is introduced into the nanodots, which primarily involves the design of the multilayer material.

To minimize variability, the researchers—Justin M. Shaw, W.H. Rippard, S.E. Russek, T. Reith, and C.M. Falco—design nanodots with a thin layer (film) of the element tantalum (Ta) only a few nanometers in thickness, what they call a ‘seed layer’. Then, a multilayer film of alternating layers of the elements cobalt (Co) and palladium (Pd) is applied on a silicon (Si) wafer.

Within the January 15, 2007 issue of the Journal of Applied Physics, the researchers state within their paper (“Origins of switching field distributions in perpendicular magnetic nanodot arrays”): “The seed layer can alter the strain, orientation or texture of the film. By making and comparing different types of multilayer stacks, it was possible to isolate the effects of different seed layers on switching behaviour.

Nanodot technology is considered one of two primary ways to increase the density of magnetic data storage in the future. The other way is to use a laser beam to heat and switch bits of data. Some scientists currently think that a combination of the two methods may best result in reducing the size of magnetic data storage. Extensive research and development, however, is still needed within both technologies before anything is introduced in the marketplace.

Additional information on the National Institute of Standards and Technology and the University of Arizona is found at their home Web pages, respectively: https://www.nist.gov/ and https://www.arizona.edu/.

 

 

Read 12227 times

Please join our community here and become a VIP.

Subscribe to ITWIRE UPDATE Newsletter here
JOIN our iTWireTV our YouTube Community here
BACK TO LATEST NEWS here




EXL AI IN ACTION VIRTUAL EVENT 20 MARCH 2025

Industry leaders are looking to transform their businesses and achieve measurable outcomes with AI.

As organisations across APAC navigate the complexities of AI adoption, this must-attend event brings together industry leaders, real-world demonstrations, and visionary panel discussions to bridge the gap between proof-of-concepts and enterprise-wide AI implementation.

Learn how to overcome common challenges in deploying AI at scale.​

Unlock cost savings, efficiency, and better customer experiences with AI.

Discover how industry expertise and data intelligence enable practical AI deployment.

Register for the event now!

REGISTER!

PROMOTE YOUR WEBINAR ON ITWIRE

It's all about Webinars.

Marketing budgets are now focused on Webinars combined with Lead Generation.

If you wish to promote a Webinar we recommend at least a 3 to 4 week campaign prior to your event.

The iTWire campaign will include extensive adverts on our News Site itwire.com and prominent Newsletter promotion https://itwire.com/itwire-update.html and Promotional News & Editorial. Plus a video interview of the key speaker on iTWire TV https://www.youtube.com/c/iTWireTV/videos which will be used in Promotional Posts on the iTWire Home Page.

Now we are coming out of Lockdown iTWire will be focussed to assisting with your webinars and campaigns and assistance via part payments and extended terms, a Webinar Business Booster Pack and other supportive programs. We can also create your adverts and written content plus coordinate your video interview.

We look forward to discussing your campaign goals with you. Please click the button below.

MORE INFO HERE!

BACK TO HOME PAGE

Share News tips for the iTWire Journalists? Your tip will be anonymous

Subscribe to Newsletter

*  Enter the security code shown: img0

WEBINARS & EVENTS

CYBERSECURITY

PEOPLE MOVES

GUEST ARTICLES

Guest Opinion

ITWIRETV & INTERVIEWS

RESEARCH & CASE STUDIES

Channel News

Comments