Monday, 21 January 2019 09:46

3 Ways the 5G Network will impact power management businesses in 2019

By

SPONSORED NEWS. Attributed to John Atherton, General Manager Power Quality at Eaton.

Australia’s appetite for online content is growing rapidly. According to the Australian Communications and Media Authority (ACMA), Australians downloaded more than 3.1 million terabytes of data in June 2017 quarter – a 43 per cent increase on the previous year.

Popularity of television and music streaming services is putting pressure on telecommunication providers to increase data capability.

However, the relationship between power quality and connectivity is critical to the success of high-speed networks. Put simply, 5G must have power to operate, no power no 5G.

Power failures or any network interruptions are not an option. Across the network massive amounts of data processing at the edge in real time is required to support small cells essential to the millimetre wave radio network, as well as beamforming with MIMO.

Rolling out 5G is complex and presents a unique challenge for telco providers. Innovative technology and applications will need to be leveraged to ensure the network not only has access to uninterrupted power, but can withstand extreme amounts of data processing and demand.

With Australia’s largest telecommunications companies already beginning to switch on its 5G network in selected areas, 2019 is going to see Australia’s telco sector scramble to upgrade networks. As a result, it is expected the focus will fall on three key power quality issues.

Densification

Network densification through small cells is essential for the successful rollout of 5G and will be central to almost all future requirements for mobile connectivity.

As users demand faster speeds and higher connectivity, there needs to be an increase in available network capacity by adding more cell sites.

100-350 micro cell sites may be required per square kilometre throughout the metropolitan areas and in cities, rather than the every 1 to 5 per square km that is needed for 4G. Power suppliers have to provide systems that support the seamless roll out of 5G and so we expect that there will be three areas power management companies will have to address:

1.    Visual aspect: The deployment of thousands of small cells mounted on poles and building facades will have to be aesthetically pleasing and fit in with their environment. It will be up to power quality suppliers to factor in these aspects into design.

2.    Environmentally robust: Small cells need to be protected from outages caused by accidents, vandalism and harsh weather conditions, especially if they are supporting IoT and autonomous vehicle services. The equipment needs to be environmentally hardened and some cells will require battery or generator backup.

3.    Automation: With the huge numbers of network elements envisaged in a dense network, automation becomes essential to orchestrate all elements efficiently, deliver a consistent user experience, and keep operating costs low. It will not be possible for a person to climb up a pole every time a cell or power system needs maintenance. Maximum efficiencies will be achieved with automation from backhaul to core to RAN and edge.

Edge computing

The rollout of 5G requires that the latency for a device to talk to the network and for the network to talk back has to go below 1 millisecond. In the current 4G networks, latency can be 10-20 times higher.

In order for this to happen, data processing, filtering and storage has to be far closer to the user/device, and distributed across the network to micro-servers, which together make up an edge cloud.

Edge computing and small cells are closely correlated, since both distribute resources to be as close as possible to the end user to improve responsiveness and quality of service. These are essential for the many services envisaged for a 5G network.

For instance, when a car is deciding whether to turn right or left, there is no time for its communications with a central management system to travel to the cloud. The car needs to communicate with cell sites that are installed close by. These could be on the side of a road or on top of a building.

Supporting this computing power will come as both a challenge and an opportunity for power management companies in 2019 as there will be a requirement globally for 8.5 million small cells to be deployed per annum. Global companies with strong local engineering will be needed to cater for this demand and determine how to best create and maintain that power needed for computing systems.  

Regulation

One of the biggest challenges for telecom companies is the time and cost to deploy a small cell.

Traditionally, to install a small cell, a telco needs to gain site and equipment approvals; negotiate fees with the city or other landlord; ensure it has sufficient power and back-up, and ensure compliance with local environmental requirements.

If every small cell has to go through a process which may take up to two years to complete, the cost and scalability of the network is severely compromised. Deployment processes and costs must be optimised to support 5G deployment.

In the US and elsewhere, telco operators are working with government to streamline the roll-out. Future regulation in Australia must focus on minimising zoning reviews and regulatory approval timelines for new sites.

The power systems needed to backup all this new network equipment must be able to be deployed easily and be fully compliant with local and government regulations. This will also be a challenge for power management companies.  

2019 will see a lot of work between utility power companies, rural authorities, city and local government agencies, private building owners and communities to ensure 5G deployment is rapid and impactful.

LEARN HOW TO BE A SUCCESSFUL MVNO

Did you know: 1 in 10 mobile services in Australia use an MVNO, as more consumers are turning away from the big 3 providers?

The Australian mobile landscape is changing, and you can take advantage of it.

Any business can grow its brand (and revenue) by adding mobile services to their product range.

From telcos to supermarkets, see who’s found success and learn how they did it in the free report ‘Rise of the MVNOs’.

This free report shows you how to become a successful MVNO:

· Track recent MVNO market trends
· See who’s found success with mobile
· Find out the secret to how they did it
· Learn how to launch your own MVNO service

DOWNLOAD NOW!

Peter Dinham

Peter Dinham is a co-founder of iTWire and a 35-year veteran journalist and corporate communications consultant. He has worked as a journalist in all forms of media – newspapers/magazines, radio, television, press agency and now, online – including with the Canberra Times, The Examiner (Tasmania), the ABC and AAP-Reuters. As a freelance journalist he also had articles published in Australian and overseas magazines. He worked in the corporate communications/public relations sector, in-house with an airline, and as a senior executive in Australia of the world’s largest communications consultancy, Burson-Marsteller. He also ran his own communications consultancy and was a co-founder in Australia of the global photographic agency, the Image Bank (now Getty Images).

VENDOR NEWS & EVENTS

REVIEWS

Recent Comments